
Journal of Biomolecular NMR, 6 (1995) 361-365 361 
ESCOM 

J-Bio NMR 312 

Use of the Cadzow procedure in 2D NMR for the reduction of noise 

Carol ine  Brissac, Th6rbse E. Mal l iavin  and  M a r c  A. Delsuc* 

Centre de Biochimie Structurale, INSERM U414-CNRS UMR9955, Facultd de Pharmacie, Universitd Montpellier-I, 
15 Avenue Ch. Flahault, F-34060 Montpellier, France 

Received 7 July 1995 
Accepted 5 September 1995 

Keywords. t~ Noise; 2D NMR spectroscopy; Cadzow procedure; Singular value decomposition; Gradient 

Summary 

A data processing approach is proposed for reducing the t1 noise observed in multidimensional NMR 
spectra. This method is based on the use of the Cadzow procedure [Cadzow, J.A. (1988) IEEE Trans. 
Acous. Speech Signal Proc., 36, 49-62], and is demonstrated to be efficient for simulated cases as well 
as real experiments. 

Introduction 

Instabilities of the NMR spectrometer during the ac- 
quisition of a high-resolution multidimensional experi- 
ment lead to well-known artefacts, commonly denoted as 
't 1 noise'. These artefacts are nearly unavoidable in long- 
term experiments, and can completely obscure the spectra. 
They are particularly awkward in the case of difference 
spectroscopy, such as natural abundance HMQC (Bax et 
al., 1983) or HMBC (Bax and Summers, 1986), or in the 
case of high dynamic experiments. 

In this paper, we present a processing approach that 
permits the removal of t 1 noise. The proposed technique 
is based on the Cadzow procedure (Cadzow, 1988), and 
proves to be efficient for simulated cases as well as real 
experiments. 

Theory 

The Cadzow procedure is based on singular value 
decomposition of a Toeplitz matrix built from the 1D 
NMR time signal (the FID). This is similar to the first 
step of an HSVD analysis (Barkhuijsen et al., 1987). This 
matrix has the property that, in the case of a signal com- 
posed of N exponentially damped sinusoids with additive 
white noise, its N first singular values are related to the 
signal, whereas the remaining non-null singular values are 
related to the additive noise. Zeroing the noise-related 
singular values has the effect of reducing the noise, while 
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leaving the signal untouched. However, truncating the 
singular value series to N leads to a matrix that does not 
retain the initial Toeplitz structure, therefore some re- 
gularisation of this matrix has to be applied to restore the 
initial structure. A FID can then be reconstructed from 
this matrix, which retains the signal information, but has 
lost some of the noise features. The procedure as pro- 
posed by Cadzow consists in iterating over this singular 
value truncation and performing regularisation steps until 
some convergence is reached. 

This procedure is actually equivalent to a parametric 
modelling of the signal as a sum of N exponentially dam- 
ped sinusoids, which can be efficiently performed in the 
time domain. The deviations of the data from this model 
are smoothed out by the procedure, while the signal is 
kept essentially untouched. 

Similar principles have already been used in high-resol- 
ution NMR, in order to remove unwanted signals. The 
singular value decomposition of the 2D spectrum matrix 
(Brown and Campbell, 1990) was shown to remove arte- 
facts by zeroing the largest singular values; the noise can 
be reduced by zeroing the smallest singular values. An- 
other method, formally different from singular value 
decomposition but built from similar principles, was used 
to remove the water signal in a 3D spectrum (Mitshang 
et al., 1991). 

The Cadzow procedure has been recently introduced 
into NMR processing as a means for reducing the noise 
present in 3~p in vivo spectra, thus permitting a more 



362 

efficient quantisation of  the observed metabolites (Diop 
et al., 1992). It has been shown (Diop et al., 1994) that 
the procedure, followed by a complete LP-SVD analysis, 
permits an estimation of  the signal parameters without 
bias, and that the noise is filtered out by this operation in 
an optimal fashion. However, the number of  lines present 
in the spectrum has to be estimated in order to apply the 
procedure. This is usually possible for in vivo spectro- 
scopy, but might turn out to be a problem in the case of  
high-resolution multidimensional N M R  as considered 
here. We present below a simple procedure, providing a 
rough estimate of  the number of  lines in the signal, which 
permitted us to apply the Cadzow procedure to remove 
the t~ noise in a high-resolution N M R  frame. 

As often mentioned by many authors, the phenomenon 
called t 1 noise (Nagayama et al., 1978; Mehlkopf  et al., 
1984) is not  a regular additive noise. It cannot  be mod- 
elled by adding a random process to the signal of  interest. 
Rather, it can be seen as a perturbation of  the acquired 
signal due to instrumental instabilities during the acquisi- 
tion of  the experiment. In the typical case where this 
perturbation is one of  the global parameters of  the sys- 
tem, such as pulse phases, sample temperature, etc., the 
t 1 noise appears as characteristic modulations, correlated 
between the different signals of  the spectrum (Gibbs et 
al., 1993). This noise is a scintillation noise (Marshall and 
Verdun, 1990), and has the very specific feature of  being 
proport ional  to the perturbed signal. When this kind of  
noise occurs, acquiring more data does not improve the 
signal-to-noise ratio, or may even worsen it. 

One way of  modelling this t~ noise process is to con- 
sider it as a random perturbation of, for instance, the 
intensity of  the signal measured in the tl dimension; i.e., 
as a 'multiplicative' noise of  the t~ FIDs. This rough 
model permits us to take into account some of  the char- 
acteristics o f  the t~ noise, such as correlation between 

signals, non-cancellation by averaging, etc. It also pro- 
vides a basis to simulate data polluted with t~ noise. 

In this paper, the Cadzow procedure is first applied in 
simulated cases, to check whether the method permits to 
compensate for t~ noise as efficiently as in the case of  
regular noise. Then, a procedure that permits the applica- 
tion o f  this method to real 2D experiments is presented 
and tested. 

Materials and Methods 

In the present work, the Cadzow procedure was imple- 
mented as described above. A Toeplitz matrix was con- 
structed from the given FID, using a prediction order of  
100. The singular value decomposition of  the resulting 
matrix was computed by using the ZSVDC procedure 
from the L I N P A C K  package (Dongarra  et al., 1979). The 
singular values were modified in the following way. The 
noise present in the F I D  was evaluated from the rejected 
singular values by calculating their quadratic mean value. 
The conserved N first singular values were then corrected 
by subtracting from them the square root  of  this noise 
value. Finally, the other singular values were set to 0. The 
whole procedure was implemented using commands  of  the 
LP-SVD module o f  the GIFA NMR-processing program 
(Delsuc, 1989). 

To test the procedure, a simulated signal consisting of  
nine lines was constructed as described in Table 1 and Fig. 
1. Simulated t~ noise was added to this signal by using a 
multiplicative noise, as described above. However, a strictly 
lessening noise was used, as we could not imagine a t I noise 
source that would not decrease the signal present in a 
given tl FID. In other words, we added simulated tl noise 
to the initial noise-free signal Xi in the following way: 

X'~ = X~ ( 1 -  Iczn~l) 

TABLE 1 
LINE PARAMETER VALUES OF SIMULATED SPECTRA AND FROM MONTE CARLO ANALYSES WITH AND WITHOUT 
THE CADZOW PROCEDURE 

(A) Reference ~ (B) Line fitting b (C) Cadzow c 

amp freq lw <amp> <freq> <lw> <amp> <freq> <lw> 

c~ 820.28 497.67 6 . 3 3  820.3+15.8 486.30_+0.16 6.35+0.51 820.3_+13.2 485.82+0.14 6.38_+0.21 
[3 775.13 251.83 6 . 2 5  775.2+71.5 258.86_+0.22 6.36+1.33 775.1+16.2 247.67+0.17 6.48+0.61 
T 415.72 347.06 6 .31  415.7.+14.2 340.37__+0.t8 6.35__+0.58 415.7__+12.4 340.00.+0.22 6.33__+0.31 

378.58 756.17 6.31 378.6-+ 30.5 739.75 -+ 0.05 6.35 _+ 0.51 378.6_+ 22.1 738.48_+ 0.04 6.37-+ 0.26 
357.47 596.76 6.36 357.4.+ 12.7 584.67+0.13 6.39+.0.38 357.5 +- 12.0 584.89+0.11 6.38-+0.28 

rl 325.37 993.53 6.36 325.4+. 14.5 972.88_+0.06 6.36_+0.22 325.4+__14.5 972.94+_0.06 6.38+_0.12 
% 292.24 655.55 6 . 3 2  292.2+_39.3 647.30+_0.05 6 .36+.0 .74  292.2+19.2 642.45_+0.05 6.37+0.35 
g 246.07 299.70 6 . 3 1  246.1__+34.3 306.04_+0.24 6 .32+.1 .06 246.1+.17.5 295.34+0.18 6.40+0.56 
V 213.93 857.36 6 . 3 1  213.9+.32.5 840.26_+0.04 6.35+_0.49 213.9+_20.4 838.34+_0.04 6.34+0.25 

amp = amplitude (a.u.); freq = frequency (Hz); lw = line width (Hz). 
a Line parameter values used to simulate the spectra. 
b Line parameter values (mean and standard deviation) from a Monte Carlo analysis of the line-fitting procedure, performed on the noisy data sets. 
~ Line parameter values (mean and standard deviation) from a Monte Carlo analysis of the line-fitting procedure, performed on the noisy data sets 

after applying the Cadzow procedure. 
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Fig. 1. The Cadzow procedure, tested on a simulated spectrum com- 
posed of nine lines. The line parameters are given in part A of Table 
1. (a) The Fourier transformed noise-free simulated signal. The spec- 
trum is simulated with a spectral width of 1000 Hz. (b) The Fourier 
transform of the same signal as in (a) after introduction of t~ noise, 
simulated as described in the text. The noise leveI e~ is 0.25. (c) The 
result of the first Cadzow iteration on the data. (d) The result of five 
Cadzow iterations on the data. 

where ~ is a positive constant, n i is a random variable 
with a Gaussian distribution and zero mean, and lal de- 
notes the absolute value of  a. This model can probably be 
contested; however, we think that it is probably a more 
stringent test than the centred multiplicative test. On the 
other hand, it is probably hopeless to try to simulate real 
t 1 noise in a dependable manner. 

This t~ noise simulation procedure effectively reduced 
the total amount  o f  signal present in the FID. Thus, to 
permit comparisons with the initial values, the F I D  was 
rescaled in order to keep the sum of  the square of  the 
data points constant. Figure 1 presents the result of  the 
Cadzow procedure for ~ = 0.25 and N (number o f  lines to 
find) equal to 9. 

In order to evaluate the efficiency of  the Cadzow pro- 
cedure, the resulting spectra have been fitted to a sum of  
Lorentzian lines using a Levenberg-Marquar t  least- 
squares algorithm (Press et al., 1986). 

To explore the characteristics of  the method, we per- 
formed a Monte Carlo study on this simulated signal by 
using 100 realizations of  the simulated noise with (z = 0.15. 
Each realization was then processed with two iterations 
o f  the Cadzow procedure, as described above. Finally, the 
resulting F I D  was Fourier transformed and the spectrum 
was fitted as a sum of  nine Lorentzian lines. The mean 
and the standard deviation o f  the parameters thus ob- 
tained were then compared to the real values used for the 
simulation. The results are shown in Table 1. 

The procedure was tested on 2D spectra by sequential- 
ly applying it to each tl FID,  after Fourier transform- 
ation o f  the data set in the t 2 dimension. An  estimation of  
the number of  lines contained in each t~ F I D  was ob- 
tained in the following way. The t I F I D  was temporarily 
Fourier transformed and phased in order to obtain a 
spectrum. The standard deviation of  the noise was evalu- 
ated in a line-free region. A standard peak-picker was 
then used to detect all local maxima higher than 13 times 
the noise level. The number of  peaks thus detected was 
used as input for the Cadzow procedure. Thus, the only 
user-defined parameter was 13, the threshold for the peak- 
picker. When no peak was found by the peak-picker, no 
further processing was performed and the column was left 
unmodified in the 2D matrix. 

The procedure was applied on a ~3C H M Q C  spectrum 
of  a 10 m M  sample of  parvalbumin at natural abundance. 
The 13 factor value was chosen to be 4; this value was 
determined by trial and error. 

The complete processing of  the 2D data set as described 
above took 1 h and 51 min on an HP735/99 U N I X  work- 
station. 

Results and Discussion 

The results o f  the Cadzow procedure obtained on a 
simulated noisy data set are shown in Fig. 1. It appears 
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Fig. 2. Example of the use of the Cadzow procedure on a 2D natural abundance ~3C HMQC spectrum of pike parvalbumin. The spectrum is the 
result of 512 experiments, with 2048 points in the F2 direction; 16 scans for each experiment were collected, which resulted in a total measuring 
time of 5 h and 14 rain on a Bruker AMX 400. (a) The aliphatic region, as obtained with regular processing. The experiment was recorded with 
the States-Haberkorn scheme. (b) The same region after application of the Cadzow procedure. (c) The same region, obtained with a PFG-HMQC 
experiment. The experiment was recorded with phase modulation. 

from this simulation that the procedure performs success- 
fully with simulated multiplicative noise. It can be seen in 
the figure that, even after the first iteration, the noise is 
already considerably reduced, and that subsequent iter- 
ations still further reduce it. 

The Monte Carlo procedure was used to evaluate the 
degree of imprecision, and eventually of bias, introduced 
by the method (Table 1). The Cadzow procedure showed 
to be unbiased, as can be seen from the mean value for 
each line parameter extracted after the processing (Table 
1, part C). The spread in the fitted parameters obtained 
after the Cadzow procedure tends to be much smaller 
than that obtained if no Cadzow procedure is applied 
(Table 1, parts B and C). This is an indication that some 
noise is indeed removed by the operation. 

The simulation study shows that the Cadzow proce- 
dure improves the quality of NMR signals corrupted by 

tl noise. This result is similar to earlier observations made 
on processing regular additive noise (Brown and Camp- 
bell, 1990; Diop et al., 1994). The total absence of spuri- 
ous signals during processing, and the very high accuracy 
in the frequencies of the smoothed lines should also be 
pointed out. 

In the case of 2D spectra, a procedure based on a 
simple peak detection was applied to estimate the number 
of lines in the spectrum. The peak detection approach can 
be used in this case because, in a typical 2D NMR high- 
resolution data set, only a small number of lines is ex- 
pected in each t~ FID after the first Fourier transform- 
ation in F2. 

Figure 2 shows the effect of the 2D Cadzow procedure 
on a natural abundance 13C HSQC spectrum of parvalbu- 
min. This kind of spectrum gives rise to large t~ noise 
effects, because of imperfect cancellation of the remaining 
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signals related to 12C-attached protons (Fig. 2a). In this 
figure, tl noise can be seen as large vertical perturbations. 
Figure 2b demonstrates that most of  the spurious signals 
due to t~ noise have been correctly removed. It can also 
be seen that no real peak has been reduced or modified 
by the procedure. Moreover, it should be noted that 
many weak peaks, buried under the t~ noise, are detected 
and that the global shape of the peaks is restored. A 
pulsed-field gradient experiment (Fig. 2c), naturally ex- 
empt of t 1 noise, has been performed on the sample to 
verify that all the peaks found in the Cadzow procedure 
were indeed real, and that no major peak was lost in the 
process. Some differences appear between Figs. 2b and c. 
These probably result from the application of different 
apodisation functions on both spectra, due to the differ- 
ent acquisition protocols used. 

The ability of  the technique to actively isolate peaks 
that are buried in strong t~ noise contrasts with previously 
reported techniques (Manoleras and Norton, 1992), which 
were based on zeroing the most corrupted regions. 

Recently Gibbs et al. (1993) presented a method per- 
mitting reduction of t~ noise. Their approach is based on 
the correlation that appears on the noise of different 
signals in the spectrum. Indeed, when the t 1 noise source 
is the random variation of a global parameter, such as the 
phase of a pulse, one expects a correlated perturbation of 
the different tl noises. However, if the main perturbation 
is, for instance, the temperature instability, this correla- 
tion will be related to the temperature dependence of each 
line, and thus will be difficult to correct. 

Conclusions 

The noise rejection technique known as the Cadzow 
procedure has been applied to t I noise-corrupted N M R  
data. Tests on a simulated data set showed that the ap- 
proach works, even though there is no theoretical proof 
for it. The procedure was then successfully applied to a 
real 2D H M Q C  experiment. The use of a pulsed-field 
gradient version of the same experiment verified that the 
improvement obtained by this technique was correct, i.e., 
only real peaks were found and no major peaks were 
lost. 

This t 1 noise correction technique, based on the Cad- 
zow procedure, advantageously compares with previously 
proposed techniques when considering its ability to ex- 
tract real signals from intensely corrupted regions, and its 
independence relative to the actual form of the t~ noise 
perturbation. The procedure is defined by only one user- 
defined parameter, which depends on the intensity of the 
t 1 noise. 
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